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ZENER OSCILLATIONS

1. INTRODUCTION

The question of the existence of Zener oscillations has remained
controversial for more than forty years. Experimental observations
indirectly supporting their existence have been reported by Koss and
Lambert (1)*, but so far this widely quoted work is the only credible
experimental evidence.

In the present report we continue the Zener oscillation studies
begun in the 1980 progress report on Semiconductor Millimeter Wave-
length Electronics (2). In that report an extensive critical review
of band structure dominated carrier dynamics was presented. It was
concluded that the phenomena limiting the realization of Zener oscilla-
tions are scattering and interband tunneling. A discussion and numeri-
cal estimate of the tunneling probability indicated that this is not a
serious limiting factor, and it was concluded that Zener oscillations
would require an adequate lengthening of the scattering lifetime.

The motivation for studying Zener oscillations is their potential
of realizing a device for generating tunable submillimeter radiation.

Like any other effective electronic generator of radiation, a practical

*The numbers in parentheses in the text indicate references in the
Bibliography.

PP PO B Y X TR

B P




PP
-

el 4
S

Zener oscillator will have to rely on phase coherence of the electrons
coupled to the radiation. A possible scheme for obtaining the required
phase initialization and phase focusing has been suggested by D. L.
Rode (private communication) and will be reported on elsewhere. In

the present work we discuss the theoretical aspects of such a device
from the viewpoint of quantum theory. Specifically we examine an elec-
tronic state analogous to the coherent states of a harmonic oscillator
("Glauber states"(3)) with a wave function whose mean square position
and momentum uncertainty product approaches the minimum uncertainty
level. Such a state can be described by a wave packet of states of

the conventional representation. The dynamics of such a wave packet
must be determined.

In view of our goals we have inquired into the physical meaning of
several existing solutions of the problem of an electron in a crystal
in the presence of an applied electric field. We begin by quoting the
standard theoretical methods and their results. No derivations are
given, since they can be found in the 1980 report and in references
4), (5), (6) and (7).

Based on the interpretation of these results, we propose two kinds
of wave packets to represent coherent band-electron states. Further-
more we calculate absorption and emission probabilities of Zener os-
cillations in a one-band scheme. These probabilities are directly
welated to the spectral analysis of the Zener oscillations in a given
band structure. We report on a computation of these spectral compo-
nents for a variety of applied field directions for the conduction band

of GaAs.




2. THEORETICAL BACKGROUND

The standard technique for studying the electronic properties of
crystals is the one-electron model. In such a model the electron is
viewed as moving in an average periodic potential. It is assumed that
in an applied electric field this average potential is unaffected.
This approximation is based on the relative weakness of the applied
field when compared with the effective fields of the lattice bonds.

There are several different approaches to the solution of the one
electron model equations in the presence of an applied electric field.

In all cases the Schroedinger equation to be solved is
N DS R
om T V(@)= eecr Jy(r,t) = 11 37 v(r,t) 1)

(choosing the sign convention e = -[el).

For our purpose it is useful to show the solution in each of three
different representations: The Bloch, or crystal momentum, Wannier or
lattice site; and the Ea representatioq.

2.1 FORMULATION OF THE SCHROEDINGER EQUATION IN THREE REPRESENTATIONS
2.1.1 Bloch Functions

A natural basis for crystal electron wave functions is the set of
Bloch functioms wn(f{;). Ege Bloch functions are eigenfunctions of the
periodic Hamiltonian Ho = g;-+ V(r), and they are labeled by the two

indices k,n. The index n is the band index defined by the Hamiltonian
oy, (&) = E_(Qy_(,T).

The index k is defined by the lattice translation operator T(;h) =

exp(153§;) through

PR
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The indices n, k are good quantum numbers since they are generated by

commuting operators
[T(am), HO] = 0.

The presence of the field term ec'r in Equation (1) breaks the periodi-
city of the Hamiltonian and k is no longer a good quantum number.
Therefore we write the solution to Equation (1) in the Bloch function

representation as
v(T,1) =2;,fdk¢n(k,t)wn(k,r).

If we choose the x axis to lie along the field &, substitute in the
Schroedinger Equation (1), and evaluate the matrix element of the posi-

tion x that appears in the field term (Appendix 6.3)
- - 3 —— ——
<n,k|x|n’,k'> = 1§ . E sCGk") + X 16Gkk") (2)

we obtain the equation of motion of thes envelope ¢n

- 3 3 — —
[En(k) -~ lee rkx' -i+h a—t ]¢n(k,t) = e€§ Xned)e(k,c) 3)

3
where xne S——%—— un(k,r) SE; ue(k,r)dr

is the polarization matrix. The integral is taken over a unit cell,
with Q the volume of the cell.
2.1.2 Wannier Functions

Another useful representation is formed from the set of Wannier

functions, defined in terms of the Bloch functions by




W (rR) = ’ L 5 f o 1k Rnw (k,D)dk
(2m)” BXZ.

where i-n is a lattice site vect::r.

In the Wannier representation the solutfon of Equation (1) is
vGE,e) = 25 X b R,V (rR)
n mn
where bn(im’t) is a solution of

[E(D-ing]_b @GO =T ¥ U nr RpisR b R ysE) = 0
r"R n' R,
m (4)

where U, R B) = [ 0GR Desm G )dr

2.1.3 The kq Representation

A representation specifically designed for a periodic medium which
suppresses the band index (its basis functions, in terms of the Bloch
or Wannier representations, are sums over all the bands) is generated
by the translation operators in the direct and reciprocal lattice.
These operators T(Z) = exp(iF-; ) and T(Fm) = exp(ia-gm) are a com-

plete set of observables [a bm] = 2‘1‘6 and they define wave functions

¥

n’
T(a )wia- = exp (%EZ{ )‘lll—(—

i —~
T(by Mg = exp ('ﬁ by Pig
with
,pi.q_ - Z exp (1k-R )G(r-q-R )

(Zw)

where a is a lattice vector.
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In the EE representation the solution of Equation (1) is

v@@,e) = [ & [ dac,q, Op @
where C(E;E,t) is a solution of

[-ﬁ 2 @ eE-(12—+‘)]c(E‘c) =ih c@®q,t) (5)

m 2 - ok T 4 i at “roedtl 890

2.2 THE ACCELERATION THEOREM IN THREE REPRESENTATIONS

The solution of the Schroedinger equation can be carried out in
each of these representations. The full solutions must, of course, be
identical, but each affords a different view of the problem. This will
enable us to gain physical insight, to choose superpositions of states
to correspond to various initial and boundary conditions, and to make
appropriate approximations.

The solution of Equation (1) and of its equivalent forms Equations
(3), (4) and (5) is the motion of an electron in an electric field,
thus an acceleration theorem. We shall take up the solution in the
three representations in the reverse order to their introduction,
because in that way we can proceed from the most general and abstract
to the most intuitive form of the acceleration theorem.
2.2.1 The kq Representation

In this representation, generated by the translation operators in

direct and reciprocal space, the coordinate and momentum operators are
p=1i— =1 é—-+ q
dk

These operators are defined within the unit cell of their respec-
tive spaces, but because the translation operators contain an arbitrary

phase factor 2nm, they are not localized in a particular cell and act



equally in all the cells of their space. Another way of stating this
property is to say that w;: places the electron on an infinite point
1

lattice in both direct and reciprocal space, with the lattice point

exactly localized both in the unit cell and in the Brillouin zone. wia

does not belong to a band; indeed the exact localization within the cell

is possible, in the language of the more familiar Bloch or Wannier

representations, because wEE contains a superposition of all the bands.

For this same reason, the acceleration theorem, deduced by Zak in

the form of a Heisenberg operator equation of motion

dk i 37 1 —
ac 'h[H’k] 3 ©€

is exact and not a one-band approximation. It is, of course, this
property that prompted Zak to invent this representation.
The Heisenberg operator ﬁ(t) is
i i

- H(t-t,)_ H(t-t )
k = éh 0 ke R 0 ;

The physically meaningful crystal momentum is the expectation value
<(r,eg) k() Julr,e0)> = <p(r,e) [k]y(,e)> .

2.2.2 Wannier Representation

The Wannier representation leads very directly to a very useful
correspondence between classical and quantum dynamics of the crystal
electron quasiparticle. 1In this representation'E is an operator
(1 grad ?J. If the interband and nonlocal terms n # n', m # m' are
dropped in Equation (3), the one-band Schroedinger equation for "weak"

fields is reduced to

e .

PO
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[En(-1V)-i 4 wt ee-r]bn(r,t) =0

Here En(-iV) is the modified kinetic energy operator that includes the
effect of the periodic crystal potential, and the envelope function
bn(;’t) can be viewed as describing a wave packet of Wannier functionms.

Its trajectory is given by the equivalent classical Hamiltonian
En(—1V) + ee°r + En(k) + ee°r

This correspondence recognizes % k as a crystal momentum, and leads to
the classical Hamilton equations of motion
aEn(k)

=1
h ok

e
[’
Q)IQJ
ol |

penk--B. g

which can be integrated to give the classical position of the electron

— — 1 — —
T(t) - T(cy) = o [E (R(©)) - E_(R(ty))] 6)

with k(t) - E(to) - ;—E (t-ty).

It should be remembered that this elegant deduction of the Zener
oscillation dynamics is based on a wavepacket formalism in a one band
scheme.

2,2.3 The Bloch Representation

The Bloch, or momentum representation leads very directly to a
group of intuitively appealing results on Zener oscillations. Starting
with Equation (3) we can obtain an exact equation of motion for the

probability density of the momentum distribution




-9
9 '} * —
(ec a—k—; +130) §¢n(k)¢n(i€> =0

which is satisfied by any arbitrary initial distribution G(E) that
changes with time according to
T ls @)% =6k —ec &, k_, k).
n X n Ty’ Tz
n
Hence for any initial superposition of momentum eigenstates, the expec-

tation value of the momentum, defined as
<> =):f|¢n(i)|2'1€ dk
n
behaves as
ec
<kx(t)> = <kx(to)> +'h (t-to) .

Note again, as in the i& representation, that this acceleration theorem
is obtained without neglecting interband terms; unlike the classical
trajectory of Equation (6), the time dependence of the crystal momen-
tum is unaffected by interband mixing.

In a one-band model Equation (3) becomes

— 3 3¢n
[En(k) - eexnn-ies 3{; ]¢n = ih T

We can write, for the polarized band structure
M) i o vy - ]
En (k) = E(k) eexnn,

Then the solution can be written

¢n(k’t) - ¢\)(k)e

with

T T
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k
k) = - 8k - - 1 fx,
¢v(k) -/_ 6(ky kyo)ﬁ(kz kzo)exp [ f (E -E (k))dkx] N

= ee 0
where « is the length of the reciprocal lattice vector lying along the
field direction (chosen as the x axis). (If the field direction is a
principal lattice direction, « is the "diameter" of the Brillouin zome
along the x-axis).

The wave function ¢v 1s periodic in the extended Brillouin zone,
traversing a phase shift of 2mv radiansas kx traverses X wave numbers.

Thus the energy eigenvalues are
e , 1 Q)=
Ev=2ﬂ'\) K—'+"<-.{E (k)dkx.

These energies have been called Wannier levels or Stark levels,
and they form the "Stark ladder" which has been the subject of so much
controversy. We use the terminology Stark levels for Ev and Stark
functions for ¢v’ to avoid confusion with the Wannier functions
W ('r'—in) .

It is possible to form a superposition of all the Stark states of

a crystal with equal weight for each state in such a way that the re-

sulting superposition has a definite-—albeit time-dependent-value of kx.

We only indicate the result without giving any of the intermediate

manipulations:
_ _ mEEE
y(r,t) 'Zf%(k)e v(k,r)dk
\Y
est
- e ft § h Q)
e w(‘h t.:t’k}h':’kZO) exp[ee ,/(; dk E (k)] (8)

where




=11~

w(% et,kyo,kzo) - un(E(c),?)ei k(e)-r

is a "time dependent Bloch function'". The designation "Houston func-
tion" is used for both ¥(r,t) and ¢(k(t),r).

2.2.4 Summary

By reviewing these three approaches to the acceleration theorem we
have attempted to emphasize the relation of the dynamical and geometri-
cal aspects of the electron motion in a crystal. The time dependence
of the crystal momentum is an exact result, independent of the one-band
approximation. The Stark ladder and the localization of the electron
in a correspondence principle sense does require this approximation.
This must be distinguished from the localization in the EE representa-
tion which has no classical analogy. We will study questions of charge
localization below, after a brief mention of the current literature.

2.3 RECENT LITERATURE

The quasiclassical electron dynamics, Zener oscillations, and their
quantization in a Stark ladder of emergy levels are seen to follow in
straightforward fashion from a one-band scheme. The controversy about
the observability of Zener oscillations or the Stark ladder revolves
about the justifiability of neglecting the interband terms Xm’ n¥ m°
The Stark ladder could be destroyed by the broadening of the Stark
levels due to the finite lifetime of the states.

This question has been debated in the literature for more than
forty years. The only credible observation that has been reported (1)
is the existence of a '"staircase' modulation of the Franz-Keldysh ef-
fect as a function of the field. This modulation effect of the field

on the interband absorption was predicted by Callaway (8), and while

-
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its verification of the Stark ladder is indirect, it appears difficult
to account for on any other basis.

Most of the calculations in the current literature appear to be in
agreement that in crystals with moderate or wide bandgaps the contri-
bution to the Stark level lifetime due to the applied electric
field-that is to say, the tunneling probability-is small. In one of
the most recent such calculations (7) interband tunneling was studied
using a time evolution operator. The wave function used in the calcula-
tion includes the tunneling process and therefore the broadening of the
Stark levels 1is directly computed. Results were obtained for
nearly-free-electron approximation in a two-band scheme representative
of GaAs. The broadening, calculated to second order in the field, is
found to be neglibible for fields up to 106V cm-l.

The theoretical gvidence thus supports the reality of the Stark
ladder. It suggests that the limitation of the observability of Zener
oscillations is set not by the intrinsic lifetimes of the energy levels
but is to be ascribed to scattering. The one~band approximation may
be accepted as well supported by the current best estimates, and our

further discussion will be based on it.
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3. PHYSTCAL INTERPRETATION: TLOCALIZATION AND CORRESPONDENCE

PRINCIPLE

3.1 THE HARMONIC OSCILLATOR ANALOGY

In the "moderate" fields under discussion (e<106V cm-l), the
classical excursion Ax of the electron oscillation orbit for Zemer
oscillations is AEn/s, where AEn is the width in energy of the nth
band. Since AE is a few eV, Axi;0-6 cm, that is to say, many times the
lattice parameter a. Inspection of the form of the Stark function
¢v of Equation (8) shows that the total phase shift experienced by ¢v
as kx traverses the Brillouin Zonme is of order 4Ax/a, so ¢V is many
electron wavelengths long.

Thus a Stark level in a moderate field is similar, in this respect,
to a coulombic or harmonic oscillator energy eigenstate with a large
quantum number. A particle in such a high energy eigenstate is local-

ized to the extent of having an appreciable probability of being found

only where its kinetic energy is positive (near the nucleus or near
the potential minimum respectively). Within this range, its probability
density is time-independent.

However, a particle with this much average energy can be localized
more closely by forming a coherent superposition of several adjacent
energy states in such a way that at some particular time their wave
functions all add in phase at some particular point along the orbits,
and cancel elsewhere. Such a localization would not in general be
expected to persist, but in some form it underlies the correspondence

principle for the formulation of classical orbits from quantum theory.

tm ada sl A
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For the example of a harmonic oscillator the theory of such coher-
ent superpositions of energy eigenstates is highly developed, since it
can serve as the basis of the quantum coherence theory of light. Har-
monic oscillator eigenstates la> of the destruction operator a have
wave functions of Gaussian shape with a localization as narrow as that
of the oscillator ground state, and they oscillate in the quadratic
potential with the oscillator frequency, and without spreading. Any
narrower localization requires a wider range of energy eigenstates [n>
and will cause the coherent state to spread with time. The states |a>
have minimum uncertainty products for simultaneous measurement of
position and momentum.

OQur purpose here is to initiate a similar study of coherent states
of a crystal electron in an applied field, to serve as models for the
quasi-classical electron executing Zener oscillations. Relying on the
conclusions outlined in Section II above, wé will confine our attention
to one-band states. We have available two types of one-band wave func-
tions: Houston functions and Stark functions, eigenfunctions respec-
tively of momentum and of energy. We work out the relations between
the two types of wave function, and the localization of electrons in
each. We then discuss the localization of electrons in wave packets
formed from superpositions of eigenstates, and an approach to the con-
struction of minimum uncertainty wave packets. We also compute transi-~
tion probabilities between Stark states, since they are related to the
emission and absorption of Zener radiation.

3.2 HOUSTON FUNCTIONS
A crystal electron generated by thermal excitation across a band-

gap (e.g. phonon absorption) is unlocalized, and so it is not
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unreasonable, in the presence of a field, to represent it by a Houston

function (see II 2c¢ above)

t P |
} %f EM (o) + ZEE )¢

_ - - _ >
VG, = v O + EE£, e 0
k_(0)+SEL
t %% @
_ - = ED k' yak
- vk + ZE, De =7k, (0 *

where we have used the acceleration theorem tk = éE; this explicitly
represents the Houston function as a Bloch function with time-dependent
label k and phase, and shows that it can be labeled by the initial
crystal momentum kx(O).

Although the electron is unlocalized, in some sense it must be,
in the presence of the field, in accelerated motion, and the Houston
function should be capable of describing this motion. The most direct
approach to a description of the motion, the computation of the expec-
tation value <x> of the position, fails because its matrix elements are
singular, as seen from Equation (2). The divergence arises from the

8- function normalization of the Houston functions which we can write

in the form
<k!(0), tlk (0), r> = &(k _(0)-k!(0));

to obtain physically meaningful results, it is useful to avoid such
singularities except as limits of finite procedures.

§- function normalization is commonly used for wave functions of
unlimited extent such as the plane waves representing free particles,

or Bloch functions, or Houston functions.

J U T Sy
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For all these functions one could argue that a normalization in a
finite volume V permits easy physical interpretation, through the quan-
tization of the label k introduced by periodic boundary conditiomns.

This leads to a normalization

<k' |k> = Gkk' s

and expectation values such as <k'lxn[k> are easily computed. However,
such "box normalization" hampers the description of the time-dependence
of k for accelerated particles, and indeed the postulation of periodic
boundary conditions 1is questionable at best in the presence of a field
which destroys the postulated equivalence of the boundary points.
Therefore it is necessary that we deal with the finitely
non-normalizable infinite-crystal Houston functions.

The method for avoiding divergent expectation values can be

developed by analogy with free-~particle plane waves. Here we have

] - ¥ n
<k'|x"| k> -f dxe 1k X (-1 %E) n o lkx _ yn 3—-;1— §(k-k')
o ak

which is meaningless for k = k', A meaningful expression can be ob-
tained, however, by using the states |k> as a basis for the construc-
tion of normalizable wave packets.

A wave packet
p(x,t) =ff(k)w(k)dk

has the norm
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<p(x,t) [y (x,t)> = fdxfdk'f*(k')w*(k')f dkf (k)y (k)
- fdk‘fdkf*(k')f(k)G(k-k')

-/dkf*(k)f(k)

and so can be normalized by normalizing f(k); evidently the same proce-
dure will yield convergent expectation values <w(x,t)lxn|w(x,t)>.
We shall make use of the Gaussian distribution
2
2

fo(k_ko) - o-l/Z(ZW)-l/A e 4o

normalized to

f.wdkfg(k-ko) = fde(ko,o) - 1.

The notation N(ko,c) stands for a Gaussian with mean at k., and variance

0

c.

The Gaussian free particle wave packet is

2
® -tkx 1 =

wc(x,t) -./-; dkfo_(k-ko)e e

The behavior of such a wavepacket is well known; at t=Q it .as the
form

2.1/4 —ikox e—czx2
wc(x.O) = (8mg™) e

and the time-development of the wave packet is well described by the

expectation values
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4k
<x> =——°t
m
2.2
hk
x> = 20 2 4 12
m 4a

From these expressions one concludes that the centroid of a
gaussian wavepacket moves according to Newton's law and is unaffected
by the momentum uncertainty, and that the uncertainty of its position
is inversely proportional to the momentum uncertainty. Moreover, since
this observation holds no matter how narrow the packet, it is not
implausible to pass to the limit of an infinitely narrow packet, that
is to say, to a momentum eigenstate |k >, and to attribute to a parti-
cle in such a state a quasi-newtonian motion, albeit with an infinite
position uncertainty.

This argument can be made more formally, and we will now shew that
it is possible to construct physically meaningful wavepackets which are
equivalent to plane waves, Bloch states, or Houston functions, and
which form sets of orthogonal basis states. The procedure is to gene-
rate these states from gaussian wavepackets whose variance approaches

zero so that

2
lm__ o IfO(k-ko)I = d(k-kg).

To begin with, we demonstrate the orthogonality of the states. For any

wave packets
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w(ko’XQt) sfmdkf(k-ko)lk>

of 8-function normalized states satisfying <k' [k> = §(k'-k) we have

ST e x v tguxit) =

= f wdk"/- wdkf*(k'-k('))<k' |k>f(k—k0)

-]

=f mdkf* (k-k(')) f (k—ko)

and if we use gaussian wave packets

2
(k=k )
2

fo(k_ko) - (2")-1/46-1/2 o 4o

to form packets wc(ko,x,t), then

(k-ko) +(k—k0)

- 7 dk
-1/2 -1
<k"),x,t[ko,x,t> = fwgwodx = (27m) / o /e 4o
(k+k') ]2
'y 2 [ _ %o 2
(ki) N _ (kgkp)

2 2 2

= (Zn)-llzcr—l e 80 / e 20 dk = e 8¢

so that

1m [ gy dx = 6
00 J vy koko

This demonstirates the orthogonality of the states. It also pro-
vides a basis for the evaluation of matrix elements in which singulari-

ties can be avoided until a final limiting procedure.

e M e A % et . m —a
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Thus we confirm the validity of the informal interpretation
advanced above of the free particle motion represented by a momentum
eigenstate. We can provide a basis for a similar treatment of the
motion of an unlocalized crystal electron by a similar development in
Bloch functions for the field-free crystal, and Houston functions in

the presence of a field.

The results for Bloch functions ¥ (k,r) = eik.r ui(?) can be

worked out using the results of Appendix 6.3. We find

(k)lw > =1

o->0 0

(k)lklwc,+0 k)> =k,

2 2.2
<Wg_,0(k0),k ,wcr»o(ko)) = (1};}3; (6°+kg) = kg

t 3E (k

)
R 3k 0

(ko) [x[v > =X (k) + g

c+0 c+0 0

2 2
520 U) |2 TG, Ueg)>=1 ¥ (e [x v, (e

1 = 2

= lim| =+ =(k,) - [X_ _(k)[“|~+
1 cw[acz 0 nn- 0
5
. 3 du*(k.) 3du(k,)
» - - @2m 0 0 -
3 where _(ko) a % 5K dr
X X X
.
' and Q is the volume of a unit cell.

The calculation for Houston functions wave packets differs from
t‘ that for Bloch functions only in that the time dependence of the Bloch
-

function
.

{
| -~ o — L
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exp [- % E(k)t]

is replaced by

K+ &£t _

X

(13

so that the differentiation with respect to kx yields

K+ £t
v J_exp[_ i_/x h E(l)(ic-’)dk}'t]=

ee Jk
b4

Kk + ect "
i | ect 1) 1 x 0 h (D) sy apr
o ;[E (4 + T) " F “%J] exP [' e fk B (Ddk x]
X

and we find, for infinitely narrow gaussian wave packets starting from

rest
X0 ™ %E-[E (E%E) - E(O)] - X .0

<x2> -> ©

a0

Thus we finally verify that in the abseace of collisions or tun-
neling a Houston function does indeed describe Zener oscillations with
a precisely defined phase and completely undeterminate position.

We originally constructed the Houston representation as an
equal-weight superposition of all the Stark states. It is of interest
to invert this procedure and determine the superposition of Houston

functions that is needed to form a Stark state.
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The Houston function

1 [k (0 +=L D @yak!
w — /E ect B et f x x
(r,t) = ¥ N e kx(O)

can be written in the form

k
X

_i e & ydk!

v(r,t) = /Efdkxcs( k -k (0) - —) V(e 7k (0)

and with the Fourier series representation for the §-function

( k -k (0) -e—;t-)"—Zexp 1[2’“’(k ~k_(0) -e;—")]

a wave packet of Houston functions with weight f(kx(O)) becomes

/_ dk w(k r)fdk (0 £ (k (0))2 exp — — 121rv ( -k, (0) - _eit )
e € k (0) e o ’
i2nv
- kx(O)

- fdkxw(k.r) 2:. ¢v(k,t)fdkx(0)f(kx(o))e

k_(0)
+ 1—/ eV @a!
0

(-1
€.

where we have recognized tte tunctional form of the Stark wave func-

tions as in Equation (8).

We see that a wave packet of Houston states w(kxo,;,t) of the

form

JEROHMOWICINR
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is equivalent to a wave packet of Stark states fdk¢\) k,t)u(k,r) of

the form

T [ i, @ ovED

i_ka(o)g(l)(i")dk'x - —iim’ k_(0)
if g(v) = fdkx(O)f(kx(O))e €€ J

e ’

the coefficient in the Fourier expansion of

k_(0) -
i X (1) ' '
f(kx(O))exp[— _/; gDk )dkx].

et

Therefore to construct a single Stark state, say with index Vg energy

E , we must have g(v) = § which will result if
Vo vy

k (0) i
- -ifx 1) FToyarr _ i2my
£(k_(0)) = exp[ ./0. e & )dkx]exp[ 2 kx(O)].

ec

3.3 STARK STATES

We have introduced the Stark states in Chapter 2, 2.1.3 above, and
related them to the Houston states in that section, and in Chapter 3,
3.2. The wave function of a Stark state is localized by the require-
ment that the kinetic energy of a carrier in such a state be
non-negative. In the present section we shall study the details of
this localization.

Apart from tunneling, the Stark states are stationary states of
crystal electrons in an applied field. The question whether a crystal
has exactly stationary states in a field (the existence of '"closed
bands') has been discussed by Wannier and Fredkin (9), but this ques-
tion has little bearing on the problem we are addressing. We can view
tunneling as a perturbation that produces an energy uncertainty in the

Stark levels. The magnitude of this uncertainty affects the
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observability of the Stark ladder, and it has been argued (4) we believe
incorrectly, that it is large enough to destroy the ladder. Indepen-
dently of this argument, however, we shall show that in the moderate
fields of interest to us, the carrier localization is negligibly
affected by the energy uncertainty.

The wave function of a Stark state can be expressed as a super-
position of Bloch functioms

v —

b (EE) = e b,

_ k/2 o
where wv(r) -f 12 dkxcpv(k)w(k,ﬂ
-K

- k
and 3, @® = 7 exp [%E(Evkx } f x gD @)yai; )]
0

As in Equation (7), we assume definite values of ky, kz. Such a choice
is in no way restrictive, since El_= (O,ky,kz) is conserved throughout
all computation.

The Stark state wvn(F) is an eigenstate of the one-band Hamilto-

nian of the nth band
Hnwvn(r) = Evnwn(E)'

More precisely, this expression means that the Ev are eigenvalues
of the Schroedinger equation if the interband terms are neglected. The
statement can be interpreted to mean that wv’ EV are the eigenfunctions
and eigenvalues of a truncated Hamiltonian Hn whose (field-free Bloch)
eigenfunctions have an=0, m¥n. In keeping with this interpretationm,

it can be shown that the wv are orthogonaland form a basis (Appendix
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6.1). We also show in Appendix 6.2 that the Stark levels Ev give the

expectation values of the complete Hamiltonian

<V, (r,t)|n lo,(r,t)> = E

total

where Htotal includes the untruncated crystal Hamiltonian and the
electric field

2

P; + V(r) - eex.

Htotal = 2

The energy eigenvalue Ev of the Stark state wv 1s given by

/2 —
g, = Zvee +lf'< e @ak_

K K

v -«/2
o 2mvee + <E(1)>

K K

where we have defined the notation

1 k/2
<f> = —f fdk
K X

. -«/2

The localization of the state is described by the expectation

value of the position <v|x|v> and by its root mean square deviation

ax = [<v]x?v> - |<v]x|v>|2]H/?

We show this calculation in detail, since it is useful in the

study of Stark state wave packets.

FIRDY WS
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<vl|x|v> = ff di!dk ¢ *(k") ¢v(1?)fd?w*(l?' »,0)xp (k,T)

K/2 . - K/Z — = 3 —
- [ Pagepdn [ e @ (1 g+ 1, @) 0, ®
-«</2 -</2 X

k/2 _ [ w? 1) —
- f_ s dk_o *(B) [—e—;— €D @) + x ® s @©

/2 2
1 W @
/ [ e E BV +X (E)] dk_

K

-«/2
27y
Tt Fay 2
where we have used ¢ *¢ = K-l.
AVERAY
Similarily
/2 — - - -
<v|x2[v> -‘/"< fdk}"dkxq,v*(k')%('!{)/dr[p(l?,r)xzw(k,r)
/2
x/2 = 22 = _0 %Xm =
’f dkx¢v*(k) ( Tz + ’Zixnn(k) ok +i ok + “nn ¢v(k)'
-x/2 Bkk x x
IR - I SIS € ) T
i 9@ [ee (E -E (k)] 8, () (10)
Cill (Lo D@ ]2 @ - LED® g
ak2 ¢v(E) = [ ee TV ( ¢v ec ak ¢V
x
= - - = (E2+E(l)(E)2-ZE(1)(E)E ) - i—i’-&‘-)— o (k)
eZEZ v v ec Skx v
b

(11)
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/2 _ @)
<v|x?|v> = lf’< x[ > €D @222 o )- L &

/2 ka
X
Lo o i T
+ 21X e (Ev-E (k) + i — akx = (k) ]

Since k is a reciprocal lattice vector, the imaginary terms prop-
erly vanish. The expression can be simplified somewhat by using

V@ = @ - eeX , ylelding

2 1
<\)Ix I\)>=<
ezez

-2 .2 = _ =
(B -E() “=x_(0)+z_ (®)> (12)
To compute Ax, we write

wlxfvr = -2 pex > m-o2e Ll gMWg, 4x
K nn et et K nn <

1 —
= ot CEFEM>)
SO
| <v]x|v>]? = ;;—ez (24| <E()> | 2-2E <E(B)> )

and

(&x)? = 22

e E

[, - 1@, 2]+ iz,

This result is easily interpreted. If we consider the "classical"

Zener trajectory, described by
x(6)-x(0) = == [E(K(e))-E(Kk(0))]

where E(t) = ﬂkO) + % egf, we can compute the mean square displacement

along this trajectory as a time average. We find
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1 [17 <~ -
<x(t)>t - L ff E(k(t))dt-E(k(0)) ]
b‘ 0
. 1 [ ec (< — dk.x _
0 X

1 |h .7 =
h = ec [.ﬁ;_{ E(k(t))dkx - E(k(O))]
3 . _
< - = [<E<k>>.< - z<k<6)>]
\
. where we have used T = %E » the Zener oscillation period. Similarly
!
: (0>, = 5 -%fdc [EZ<E)—zE(E)E<0)-EZ(o>]
M4 ee
{! K 2 — o

‘ E°(k)dk K E(k)dk
1 et d/r X d/ﬂ X 2 ]
= — —_—= ~ 2E(0) —= 4+ E“(0)
e2&:2 ‘mc[ 0 dkx/dt 0 dkx/dt

4 -1 |1 f “e2 @)k -2E(0) L f “E(®) dk_+E2(0)
' 2 2 'S b4 < x
: e’ e 0 0
- 1 2 = = 2
l! - ezez [<E (k)>|< - 2E(0)<E(k)>K + E (O)]

and

1 <x2(t)> - l<x(c)>|2 = [<E2(E)>K - 21~:(0)<E(E)>'< + 32(0)

- |<E(E)>K|2 - 1-:2(0) + 2E(0)<E('1€)>K]

o [<E2(E)>K - |<E(E)>.<|2]
e €

which is seen to be identical with the squared uncertainty of position

) 3. SNS uimn . auime 4

of a Stark state, except for a small term associated with the polariza-

tion of the band.
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The crystal momentum expectation and uncertainty in a Stark state

is

<v|k_[v> = 0
x

<
12 °

(Akx)2 = <v|ki|v> =
This indicates that the crystal momentum is entirely indeterminate
along the electron's trajectory in the Brillouin zone.

We can now see that both one-band Houston and Stark wave functions
describe the Zener oscillations of a crystal electron, but in rather
different ways. In Houston states the crystal momentum, which repre-
sents the phase of the Zener oscillation, is sharply defined, at the
cost of complete delocalization of the electron. In a Stark state, the
energy 1is sharply defined, and the electron 1s localized to the extent
determined by the requirement of a positive kinetic energy, but the
phase of the oscillation is random. According to Equation (11), the
electron oscillation is centered about a lattice site, with a small
shift due to the band's polarization. The amplitude of the oscilla-
tion, for the conduction band of GaAs, is of the order of 200 lattice
parameters in a field of 200 kv/cm.

3.4 WAVE PACKETS OF STARK STATES

The most appropriate representation of a quantum mechanical system
is normally determined by the experiment that is to be described. We
have already suggested earlier that an electron thermally excited
across the handgap is unlocalized and might be represented by a Houston
function. The excitation will usually be to the edge of a band, k=0

in a direct band gap semiconductor. This fixes the phase, but it

Py

Adenidh

SR LY § oL




Lo

S g mm e o

-30~

ignores the randomness of the excitation. One way to prepare a Stark
state might be by Auger tunneling from a bound impurity level, giving a
precisely defined total enmergy, again with a random phase.

Although both of these states represent electrons executing Zener
oscillations, evidently neither is suited for the generation of coherent
radiation.* As we pointed out in Chapter 3, 3.1, we can hope to find
a coherent superposition of states in which both the position and the
crystal momentum of the electrons are specified within the limits per-
mitted by the uncertainty principle. Leaving aside for the time being
the engineering problem of how such a state is to be prepared experi-
mentally, we now discuss a possible way of constructing it from Stark
states.

3.4.1 Minimum Uncertainty Product

For a pair of operators A, B, with commutator
[a,B] = 1x
the uncertainty relation is
AAAB 1% K.
We wish to construct a minimum uncertainty wave function, for which
AAAB -‘% K

*An extreme (and rather ludicrous) example of this unsuitability of
Houston states with a range of phases is offered by the filled valence
band of an insulator. In an applied field, the motion of every elec-
tron in this band is governed by the equation hk=qe , and it executes
Zener oscillations. Furthermore, none of the electrons can be scat-
tered, since there are no empty final states available. But, of
course, the oscillations are unobservable, because there is perfect
phasge cancellation.
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§ A gaussian wave packet of plane waves can describe the motion of

h an unaccelerated particle in vacuum. Such a wave packet can be cen-—
structed to have a minimum uncertainty product of position and momentum
at a given time, but because the Schroedinger equation in vacuum is dis-
k! persive, the wave packet spreads and the minimum uncertainty product
grows with time.

; In the presence of a potential, there can exist minimum uncertainty
wave packets that do not spread with time. An example is furnished by
the Glauber states in the quadratic potential of a harmonic oscillator.
As we mentioned in Chapter 3, 3.1, these eigenstates of the destruction
operator do not spread, and they have a minimum uncertainty product of

x' position and momentum, as well as of occupation number and phase. When
the harmonic oscillator is a mode of the electromagnetic field, a

Glauber state corresponds to maximally coherent radiation, as exempli-

7" S

1 fied by laser light.
The minimum uncertainty product of the position x and crystal
‘! momentum kx can be obtained from the commutator; for example, in a

momentum representat ion

VP—

a p—
x i + Xnn(k)

[ akx

- so

' [x, kx]d> (k) = xkx¢—kxx¢

: . 3% e 2

E' j"M':ka ka + Xnnkx(p ikx ka kxxnn¢

ai¢
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and therefore

sxAk > =
x— 2
3.4.2 Periodicity of Expectation Values

We propose to construct a normalized wave packet of Stark states

1
1 E\)t

VEE = 3 Empmv @e

S0

with T [£ov0 ]2 =1

and with the additional constraint, imposed in order to simplify the
calculation of certain averages, that the weighting function be symme-

tric about VO’

f(vo-v)=f(vo+v)

We can generalize the calculation of Chapter 3, 3.3 of the expec-
tation values and uncertainties of position and crystal momentum.

Let A be an operator having the property
- === = ' - — —
TIAED, @ = 60k [6,@ e, @0, @]

with ]E;;3 Bloch functions and ¢v the Stark state envelopes as defined
above. The operators x,xz, kx, ki are all of this type. We can now
establish that the expectation value of such an operator for a Stark

state wave packet w(;;t) is periodic with the period of the Zener

oscillation:
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<'1’(;,t)|Al\b(;,t)> = <A>f =

\Y
i i
- fdr ) f*(vo-u)f dklp* (Y E' DA " ’
T xu
-«</2
; K./Z — —— L
T s [ g v
S X7V
-</2
i
e Py (Eu-Ev)th/Z f . P ,
> (vg ) ECvgv)e /2 dk dk ¢*(k')S (k -k ).
[‘- u Vv L
1
- [ek e () +c g (0] ]
' 1 1
! = (B -E )t /2 5 k(B -E) i
] DIP> f*(\)o"u)f(vo-\))e-rl Vo -l-f e X Vv 4
:< . H v K -K/Z .
3
r.
‘i (o, )+ Jak ‘
b 4
i
i — k_(E -E )
g since ¢ *¢ =;l_eeexvu.
v u A" K
: But E -E_ = (v-y) ZZSE 3
F v U K
1
and hence the last term vanishes except when u=v, and
k
i X
= (E -E )t 127 (v=p)—
h v 1 ;
<A>f\) aZZf*(\)o—p)f(vo—v)e o :fdkav(kx)e < j
UV
+ 20 £y -v),ZC
0 v
v
With a=v—-u we can rewrite this )

;
2reg iZTroka

ia( ) t 2
<A>f = 2 e hx 2 f*(vo—\)-l'a)f(vo-v) .]:.'/‘K/ dk G (k )e X
K X Vv X
v a v —«<[2 }

+ 2: lf(“o'V)lzcv}
v

e WYY TR ¢ YTW YV Y TSR YT T T o Y

[
H
H
i
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which can be recognized as a Fourier series representing a periodic
function of period f«/ec (the Zener oscillation period), with coeffi-
cients

2 Ex(vymvka) £(vg=v) [F_(G )+ ?vaao]
v

where
k

1 /2 i2nq —
F (F(k)) —f dk F(k e K
[0} X K X X
-«/2

This means that for such a wave packet of Stark states not only the
expectation values <x> and <kx> recur periodically, as might indeed
have been anticipated, but also all their moments. The wave packet
reforms to its original shape after a period of oscillation. It may
deform as it oscillates, but there is no long-term spreading. In this
respect the Zener oscillation is similar to the motion of a harmomnic
oscillator, and unlike that of a free particle.

The reason for the periodicity in time of the packet wave function
is the uniform energy spacing of the Stark levels. Since the time de-
pendence of each of the wave functions in the superposition is of the
form exp [(i/h)Evt] with each energy an integral multiple of h W, ener’
the periodicity follows immediately.

3.4.3 Position and Momentum Uncertainties

The time-dependent crystal momentum expectation value of kx is

2mec
ia(—;;?-)
<kx>fv = g(a)Fa(kx) (13)
where g(a) = 2: f*(vo—v+a)f(vo—v)
V z-=

and (see Appendix 6.4)
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Fa(kx) =

0 a=0

Similarly (Appendix 6.4)
2Tec

2 2 ic (-——-—) t

ab, =S+ T D s e V™ g (14)
\V] a# 21"

The spread in k.x of the wave packet, given by
2 2 2
(8 (€))7 = <k (£)>, - |<k (£)>]¢
v v
varies in a complicated fashion in the course of an oscillation period,
but because of the periodicity of the wave packet, it is easy to obtain

a time average. We have

2tec

——

1 /T 2 1 [T 1(a-B) ( n ) t
T,/o' kg |ae = ffo a3 e </ gr(@)g(a)FEkIF, (k)

2 2
= 2:|g(“)|2|Fa(kx)i2 = z: (E;.) lﬁﬁQ%L_
a

27
a#0 a
and
2
1 T. 2 K
?f kg dt = 77
0 v
so that
2 2 2
1 (T 24, . < x \ lg@)[”
Tf (k, (£)de = 35 - 35 (57) 2 (15)
0 a#0 a

To compute the expectation value of x we use the result (see Equation

9

D, ® = & (£, - 2@]s ®
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so that

ia(Znee)
- _1 _ 2 1 tix =
x> = - = 2; (f(vo v) | E, + o %; e g(a)F (E(k))

The term in Ev can be simplified if we invoke the postulated symmetry

f(vo-v) = f(v0+v):
vo-l o
2 2 2 2
z;lf(vo-v)| E, = Evolf(O)[ +-g;|f(v0-v)l E, + 2: If(vo-v)l E,

v 0+l

2 . % 2
=E |£0)|°+ L [f@|“CE ,+E )
\)0 a=1 v 0+G \)0-0.

but

and

2 Y |f@|? =1 - £}
a=1

hence

and

1 ia( - ) t _
S -E“O + 2: e g(a)Fa(E(k)) .

e
v €

The time average over one period of |<x>f [2 is
v

T —
%f at | <x, >|? - ; 5 [EVO + }; ls(a)lleQ(E(k))lz—ZEv

0 v e e

0<E(k)>(].

Finally the expectation value of xz is
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<x?>, ;2 T leevg e
v e v

2meE

— 2 _ _
+Y e \B ) g(a)pa(% - (0 + ’:‘nn(k))
% e €

E(k

The first term of this rather complicated expression can be simplified:

«
2 2 2 2 2,.2 2
Y ES|E(uav) |C = EX £ + 2 |£() | “(E +E5 )
5 Y 0 Vo o=l vote vo™a
and
2 2 _ 2
Ev 0+a + Evo—a (Ev 0+a M Evo-a) ZEvo-aEv 0+a

2 2
= (2E ) —2[(\) - ) (Zﬂee) + 2v, -2—“:—5 <E(l)>K + <E(1)>K]

Yo
2
- 252 4 242 (Znet-: )
\Y K
0
21v (1),

because E = —" eec + <E
v K
- 2 2
and so, using also 2 Z%-If(a)l =1 - |£€0)|
a-
2
ZEzlf(v _v)lstz +22 (Znee) azlf(a)lz
v 0 v
v 0 a=1

The time average of <x2(t)>f is (see Equation (12))
\YJ

T
1 2 1 2 2
-T_'/o. de<x™>. = 5 Ev +2 2:( )a | £(a) |

v e ¢ 0 a=l

2 — —
E2 () o s e E(R)
< _ESE_ - Xﬁn(k) + i) - 2E) g

ec 0 ec

The squared uncertainty of position is

o

‘e dd
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x(e)? = o>, - o, |

\ \

with time average

T - 2
%f ae(x(eN? =2 Y (i—") Cle@? - 45 T ls@ | @)
0

a=1 e’e =—
+ eéez [<E(E)2>K] - xfu@ + snn(E) (16)

3.4.4 1Uncertainty Product and Band Structure

We have now worked out the expectation values for wave packets of
Stark states of kx, ki, x, and xz. These quantities are periodic func-
tions of time, with the Zener oscillation period. If the weighting
function f(vo-v) goes to svv , the expectation values reduce to those
of a Stark state. 0

If the uncertainty product Ax(t)Akx(t) = I(t) takes the value

I(to), at time t., it will in general change with time, and will return

0’
to I(t,) at t = tyg + T, vhere T = kh/ec. Thus if a weighting function
f(vo-v) is chosen to minimize I(to), it will not in general produce a
minimum uncertainty product at other times. Some optimization cri-
terion should be chosen. The criterion will presumably depend on the
application to be made, but some general remarks can be made.

One may wish to minimize the time average of I:

1 T
?'4‘ I(t)dt = <I>T )

or some combination of <I>_ and the fluctuations of I(t) over a cycle

T
%_{ (Iz(t) - <I>,§)dt

T

or the maximum value sup I(t).

T
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Alternatively one might wish to minimize the spread of kx or X.
In every instance, the quantity to be deduced is the weight function
f(v). The determination of this weight function is now a mathematical
design problem related to the optimization criterion that has been
chosen.

In connection with this problem it should be observed that the
expectation values we have computed contain the Fourier expansions of
the band structure and polarization matrix elements E(k), Xin(E) and
(k). A band structure of interest, that of the conduction band of
GaAs, can be quite adequately described by five Fourier coefficients
(see Chapter 4 below). We also know, from the discussion in Chapters
2, 2.3 and 3, 3.3, that the polarization matrix elements are negligible
cdmpared with the contribution of the band structure.

We can rewrite the squared momentum and position uncertainties,

time averaged over an oscillation periods, from Equations (15) and (16):

e lg@]?
"‘f (Ak (t))dt = 12 —2 2 Ct 7))
=

Ct

T - ——
%{ (AXCt))zdt = ;' 3 |:<l-:(k)2>'< - |<E(k)>:<l2]+ <= -xz >

e E

= 2 =2
- 2 ls@]|°IF (G|
a#0
[e2 Lo -]
+ }:1 ﬁ'l— 218 |2 (18)
a-

In these formulas, the function g(a), it will be recalled, is defined

in terms of the weighting function f(vo-v) as
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g(a) = Y £x (v ~vHa) £ (V=) .

\)--ﬂ

This can be viewed as the autoconvolution of f(vo—v), and there-
fore g(a) will be somewhat broader than f(vo-v).
The leading terms of Equations (17) and (18) are the squared un-

certainties (Akx)2 and (Ax)2 of a Stark state

2 KZ
(k) = 12

2 1 ™2, =, 12 = _ g2
(Ax)v eZEZ [<E(k) " I<E(k)>x‘ ]+ ““an xnn>:<

As we have pointed out in Chapter 3, 3.3, the position uncertainty
of a pure Stark level 1is effectively accounted for by the size of the
Zener oscillation orbit. We now see from Equation (18), that forming
a wave packet of Stark states has two consequences: It broadens the
uncertainty slightly (last term in Equation (18)), because adjacent
"Stark orbits" are displaced from each other by (roughly) a lattice
parameter; and it can lead to a much larger reduction due to the corre-
lation of the orbits, with each harmonic of the band structure contri-
buting to the reduction.

For example, for a sinusoidal band, as would be exhibited by an

extreme tight-binding model

E(kx) = -A cos kxa

the band-structure dependent dominant part of (Ax)2 (neglecting the

small broadening due to the last term in Equation (18)) becomes

v Ty
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Furthermore, we see from Equations (13), (14) and (17) that the band
structure does not affect the spread of crystal momentum.
3.4.5 An Example in the Tight-Binding Approximation

The detailed analysis and design of a wavepacket representing an
experimental situation depends on the band structure of the semiconduc-
tor, and will require numerical work. Still it should be possible to
obtain insights and observe trends which might be independent of the
particular material, using simple models and analytical methods. One
such model, the sinusoidal tight-binding band structure, was introduced
in the last paragraph. We now study an example of the behavior of
wave packets in a model solid with this band structure, a Real Equal
Weight Packet.

We assume a superposition of Stark states centered on v, with

0
weights.

7% - (N-1)/2<(v=v ) < (N~1) /2
£(v-vy) =

0 otherwise

It is easily found that
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g(a) = 20 £ (v =vta)£(vy=v) = (N-a)/N
\Y)

F, [EG)] = A/2 all other Fj[E(k)] =0

(2 (0] = 4%/2, F[E2(0)] = 4%/4, all other 7,2 @] = o

In addition the following needed expression can be reduced to a simpler

form

€, =2 3 (E, +E, ) E*(vy~v-1)f (vy-v)
v

=2 3 (E"o“’- Evo_a_l)f*(a + 1)£(a)
[+
= 4E o 2, f*(a + 1)f(a)
[+ 3

=20E ), (2% + 1)f*(a + 1)£(a)
a

= 4E o 25 f*(@ + DE() = “E, &)
a

where we have used f*(-a) = f(a), true for a real wavepacket .
Let us use these results in order to compute the expectation
<x>f(v) and uncertainty Ax for the rectangular wavepacket. We find for

our tight binding band

- ca mass-mmssanm,
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} <X> = %e— [-Evo + Ag(l) cos (a;et )]

' 2 1 2.2 2
] AXT = E: f(v=-v )| E - E
. e2€2 [ " | 0 v Yo

2
+ ( --]“Z-Azg(l)2 ) i

N|:>

A aect
+ (ZAEvog(l) -3 Cl) cos

insidiuneli oo et

2 2
+ ( 2_' g(2) - 2— 8(1)2 ) cos ___Za:et: ]

Applying these formulas to our real rectangular wavepacket we find
1 ¢ N-1 aect
Ry [-Evo + A( N ) cos ( K )]

(N-1)/2
Ax2 -1 I:Z(aee:)2 %—Z az

a=1

2
+A2(% N-2) _% (N_-_}_) )cos Zaeet]

N N K
1 (N-1)/2
with the series % Y o’ = %{ N-é /2(2((N_1),2)2 + 3 Q=1 1)
a=1
2 2 #
LN N 1 N
. -12+4+6-12forN1arge .

Note that the amplitude of the oscillation increases rapidly with the

- number N of states in the packet. The "centroid" of a single state is
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fixed; as more states are superposed, it oscillates, reaching a maximum
amplitude corresponding to the width of the "classical" Zener orbit.

The position uncertainty sz contains a band-structure dependent

£ [(3-3 (2)7)+

e €

term

N~

N-2 1 [N-1 2 2aect
w72 \W) JeosTho

which narrows as the number of states is increased, and a second term
which asymptotically increases as N2 for N very large.

This is indeed what one might expect on the basis of plausible
reasoning. A single Stark state represents an electron which has a
time-independent probability of being found at each point of its
orbit-~it is "spread out" over the entire orbit. As other states are
superposed to form something like a coherent state, they interfere
constructively in the vicinity of some point along the orbit, the
probability density becomes localized and time dependent, more or less
describing a classical oscillating particle.

This localization can narrow and persist only if the wave functions
of the Stark states forming the packet overlap in space; that is to
say, 1f the range of Stark energies En is less than the energy width
2A of the band, or the number of states is less than 2A/eea. Stark
states which are separated in energy by more than 2A do not overlap and
cannot interfere; they contribute to a probability density extending
beyond the '"classical" Zener orbit, and contribute to an increase in
Ax, which asymptotically becomes proportional to the size of the class-
ically permitted region., The narrowest localization occurs for
2A) 2/3.

N=1.14 (——
eca

e e — o —
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3.4.6 Minimum Uncertainty Product Wavepackets

The rectangular wavepacket used in the preceding section was chosen
arbitrarily. We should like now to attempt to select a wavepacket to
minimize the uncertainty product AxAkx. To facilitate this attegpt we
will first investigate the somewhat simpler péoblem of minimum uncer-
tainty wavepackets in the field-free crystal, in a basis of Bloch func-
tions. Since a minimum uncertainty product packet of plane wave states
is known to be strongly time-dependent, we will only undertake to con-
struct the packet at a time t at which the phase
exp [-(i/h )(t'-t)E(E)] of the Bloch wave is unity and the wave packet
has the form

v = lf /2 otk o@D

“J_/2 X' X

We will try now to derive the required wavepacket shape for which
the minimum uncertainty possible allowed by the Heisenberg relation, is
reached at a time t.

In order to attain this purpose we will use a method similar to
that used to construct the Glauber States and the minimum uncertainty
wavepacket of plane waves.

We showed that in the Bloch representation [;;E]== i, which implies
that D(ri)D(ki) Zﬁ% .

Let us call ¢G(kx) the state which satisfies the equality in this
relation.

Let us look at the origin of the uncertainty relation
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2= 3 l<ollxx dlo>|

1
= 5 |<o][ax, 2k _Jo>]
where Ax = x-<¢|x|¢>
Bk = k_-<¢|k |¢>
Using the triangle inequality we find
1_1
2 = 7 |<ol[ax,8k J[o>[<|<o|axsk |¢>]

Using the Schwartz inequality we can further write:

, 1/2 , 172
1[<¢|Ax I¢>] <¢|Akx|¢>]

2 < DDk

N

The state ¢G which achieves the Schwartz equality should satisfy
sk [og(k )> = 1bax|,(k )> (19)

where ib is an arbitrary imaginary constant. We will have to determine
which number b realizes the triangle equality.

We can rewrite equation (19) as follows:
(k ~1bx)¢ (k ) = (<¢G|kx|¢G>-1b<¢G|x|¢G>)¢G (20)

We know that 1if ¢G(kx) is also a solution of the crystal rtamiltonian
perturbed by the electric field, then <kx> and <x> will be periodic
functions of time. In the ideal case ¢G(kx) will satisfy the equality

at all times. In a more restrictive case ¢G(kx) will only satisfy the
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equality at a given time. In any case the function ¢G(kx), at all times
or at a given time,will be a solution of equation (20).

Let us first solve the simpler equation (20) where

":V';'.T__T"d ey

‘s <kx> = K(t) and <x> = R(t)

Using x = 1 5%7-+ th(E) we can rewrite (20) as follows
X

3 -—
;\ (kx O ibxnn(“))“’c(“x’ = 8(e)0 (k)
with A(t) = K(t)-ibR(t) (21)

The general solution is

ko
- ;_b ki + ———Aét) kx+if x X(k)dk, (22)
¢G(kx) = C(t)e 0

We will now proceed to a study of the proposed solution (22) of equation

(20).

To normalize the wave packet, write

2
k kK
-4+ X4+ iR x X(k)dk
2b b x o1 : X

¢G(kx) = e 0

A(t) _ K-ibR _ K
b b b

using - 1iR.

Since X (k) is real ~
nn

2
o8 ) oo (k) = [C|% e

and the normalization is determined by
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2
kZ;:; K(t)+x/2 _ (kx-K(t))
2b b

2
1=|c| e R(t)-c/2 © dkc_

We find immediately
<t [k o> = R(E)
1
D (k ) = E- b—+0

To determine other expectation values, we rewrite

1 2 kx T
- %5 kx + Dkx + if X(k')dk'x
o ACE) | R(E)
with D 5 b iR

Let us derive the average <x>G

3
“glelog> = <ot 5 + XK [4g>

R(t)+x/2 kx - -
¢6¢G [i (— Y + D+ iX(k)) + X(k)] dk
K(t —Kl,z

K K
—ib+i(b-iR)

= R(t)

We see that the proposed solution (22) is a solution of equation

(20) since <kx>G a K(t) and <x>., = R(t). We have tested ¢G(kx) against

G

equation (20). However, we need to check also the triangle inequality.

sl
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For this purpose let us derive the deviation D(x) of our coherent state

(see Appendix 6.3).

2 32 - 3 -
<oglx"log> = <opl= =5 + 21x00) 5= = () [eg>
X

3k
X
2
Let us first deal with <- 2 >G
ok,
X
52 K+ /2 3 k — .
<= —3 >G=-/ ¢E(kx) Y (-b—+D+iX(k))¢G(kx) dx
akx K=k/2 b4
2 k 2
3 - -1 3k - X + ix(k
== >G--<[ b+iak X(k)+( b+D iX()) ]>G
dk p 4
x
Let us expand the square term
2
k k _ k
-{-X+D+ix 2=—-—’-‘--D2+x2(k)+—2—Dk —2ix(E)(——’-‘-+D
b b2 b x b
then we can write
2

I

2 K-H(/?. Tk
3 / ( 2 . 2D )
€ o —— > = - -D" + ==k ¢*¢ dk
G
aki G /2 b b "x]'G x

o | =
N

K+ /2 yz _ _ ( kx , _
+‘/K:,</2 T(k) = 21x(k) |- =+ D) - i B_k; X(k)dk_ (23

We can evaluate the first term of the right hand side of (23)

N

2
k <kc>
-—2‘--D2+2_Dk> :l-DZ.,,._Z_D.K___G

< X
b xG b b 2

o'
o
o

2
2 <k<>
L 1_(XK _ 2 K 2K (K, x G
b (—2 R 21iR —b)+—b (—- 1R) -

24 & & 4 .

tenbetsbntaatibndind o dnedod
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2
D(k )
b
32 - 3 -
Then <x2> = <= 2 + 21x(k) 3k + :(k)>G
G ak,x X

o' |

- L P + BB + =@ - XG>
b X G
Recall that <>G means
+</2

<f>G = ¢3(kx)<j>c(k.x)f(k.x)dk.x .
K-x/2

Since ¢é¢c and K are time-dependent, <>G is also time dependent.

note <> <>,
that G # "

The deviation Dz(x) is

2

2 2 1
D" (%) <x >G - <x>G -

2 -y - w2
5 D (k) + <2(®) - X (),

o=
o

and the uncertainty product is

2 2 1.2
D (kx)D (x) =D (kx) -

1
2

4 2 o 2 =
N D (kx) +D (kx)<;xk) -X (k)>G

Also

The sum of the first two terms, and the last term are each positive.

D(kx)2 is a function of b

2
k/2 5 kx/b

kx e dkx
Dk )2 - - /2 :
x /2  =k°/b
f e ¥ dk
-«</2 X

2
b 2 2 2 _«
0 23 D (kx) <D (kx) :-D(kk)

12
b+0 brw
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D)’ Dek)’
Some values of 5 - bz = B(b) are shown in this table
b .02¢2 .08 182 | L3262 .5¢?
B(b) .2496 .2474 .2162 .1666 .1250

Since the uncertainty 12 is greater than 1/4 we deduce that the positive

term
Dk )2<z(®) - X2(@>, > a’paic)?

is greater than %—- B(b).

Since the term <E-X2>b depends on the form of the Bloch functions

it remains crystal dependent and is not likely to yield 12 = % for

b>0. The Bloch state appears then as the only minimum uncertainty

b2 _ /%1
4

b b2

Mathematically the reason arises from the fact that only the

state since 12(b=0) = for b+0.

Schwartz equality is always satisfied whereas the triangle inequality
is only satisfied exactly for b=0. For small b these states are,
however, very close to achieving I2 = %-. Let us call them quasicoher-

ent and let us denote them |Y>

b L]
Does the family |Y> constitute a family of states which minimize
Iz? In the procedure chosen we know that they are uniquely determined.

However, there do exist other procedures to minimize Iz. For example
we could have tried to satisfy the triangle inequality first. We have
shown only that the only exact minimum uncertainty states of this type

are the Bloch functions (b=0). The family Iy>b are not necessarily

i

e o Bidebebinieiniamink
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those states which minimize IZ. The family ly>b is derived from a

1 special criterion. This criterion is: we will try to minimize 12 by
satisfying the Schwartz equality. It is difficult to analyze the use-
fulness of this criterion. However, it 1s possible to analyze the

*! result which is:

g 2 4

2. D(k, ) ) D(k ) . D(kx)2<32(E) _ XZ(E)>G

b b2

We have already pointed out that the family ly>b con2s close to satisfy-

ing I2 = %-for b small relative to x(b < %3 ), since D(kx)2 = %-and the

polarization terms are weighted by D(kx).

Since the ultimate purpose of this discussion is to explore methods

of localizing crystal electrons in the presence of a field in regions of

Y S

reciprocal and direct space small compared with the Brillouin zone and
with the size of a Zener orbit respectively, the Iy>b states evidently
provide a fruitful basis for the discussion.
3.4.7 Gaussian Wavepackets

We now attempt to apply the calculation of the last section to the
complete crystal-plus-field Hamiltonian. Since the Stark states are a
complete basis for the direction of a reciprocal lattice vector, it
should be possible to construct a wavepacket with the properties of a

[Y> state from Stark states, and we shall attempt to approach this

b

criterion as closely as possible.

We begin with

L. A aa
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AVE Lot

k
L K2 - ;/ x gD (@
w 1E (3 - 5)
Z fG(V) e viee h
v=—o

where Ev = 32225 + <E(l)(E)>K We can write the waveform ¢G(kx,t) in

the Bloch representation as:

K
- 1_/'x gD @k 1<g(D) @®> (£ -%)

I
ook t) = e 0 e
2m ect \
® +‘[\)—-(-T+k) (24)
2 f(ve < x
ve=wo G
® iv %1 s
Let us define hG(s) = 2 e fG(v)
VE=®
1 e
with s = ‘x - x t
1 /24K -1 ZE s
we have fG(v) = = e hG(s)ds
K
K=x/2
As we clearly see that the term h(s) will never allow the destruc-
k
L [ % E@nyar
tion of the phase modulation e ¢¢Y0 X {f f(v) is time
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independent and hence wG(kx,t) will never have the form of the solution
(22) of our quasicoherent state |Y>b at all times.
2 2
-g (V-VO)
However, using a gaussian distribution fG(v-vo)a e we can

generate a periodic gaussian function hG(s) centered at zero with a

small deviation such that for s [\ - g-, §-+ K]

® {wv il s
h(s) «f e x fG(v)dv

® iy 2n s -oz(v-vo)2
« J. © K e dv

® i == g(Viv,) _2
- J(. e ¥ 0 o0 Vs av
s2
2n —_——
1 — sv 2
= e Oe 20 forK--;-isi"f—z-+K

we see that h(s) 1is centered at zero. We also need 0 to be small.

Let us substitute for h(s) in equation (24)

k
X — —
- :—ef D @ax, 1<e® @> (i - %)
¢G(kxt)¢ e 0 e
2
kx e2€2t2 eeth
2n ( eet) - - +

i =—v, |k ~—=— 2 2, 2 2

e © 0O\ x h e 20 e h 29 e ‘o (25)
= 1 (1),

except for the replacement of xnn(k) by e E (k) equation (25) can be

developed in the shape of equation (22)

- thsndd St bedenddetindd
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k 21V ectk
A(r) - 1), X 0
b kx 1<E (k)>x ec +1 K kx + hoz

with K(t) = + eTEt-

1 27y

) 5
e—e <E (k)>'< -

R(t) - -

we can write ¢G(kx) as

A

k

h ¢k, = C(t)e 0 x
k~ X
3 What are the properties of this state? The expectation values have been
{ calculated before. It is possible to replace Xnn(E) by E(l)(53 in the
F average before any summation is done over Xnn(E). We directly deduce,
S
Y as before
. <k_>. = K(t)
p x G
i 2
4 2 _b_ o 2

D(kx) *3=3 if o° small

v 7 ™
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2
) D(k,) 2 2 =
<x > = %--—-2——4' R(t) + <E(D - X (k)>G
b
+ M <Ek)>. + < EZ(E) >
ec G e2 2 G

the deviation is finally

2
D(k.)
D(x)z-%-——}‘—b+ <z
b

2
- x°>
G, (£)

1 2 2
+ <5 | <E“(k) - (<E®> ) ]
e262 [ Gb(t) Gb(t)

We directly deduce that the Houston state is a minimum uncertainty state

2 2 1
since D(kx) D(x)" = Z—+ D(kx)("')

b0 b0

-1
4

As we have done earlier with the rectangular wave packet of Stark
states, we shall now study the behavior of a wave packet of Stark states
with gaussian weighting, in a band with the tight-binding cosine form.
Before we proceed to details, we should point out that our calculation
so far has included an arbitrary restriction to wave packets with real
weighting coefficients. As it turns out, this restriction is not
altogether trivial. For example, we have seen in Equation (8) that in
order to form a Houston state as a superposition of Stark states, it is
necessary to use essentially complex expansion coefficients, that is to
say, coefficients whose relative phase does not vanish at any time

during the Zener cycle.
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A consequence of the restriction in the present context is that
the minimum "size of the electron" Ax to which a real-coefficient wave
packet of Stark states can be localized is field-dependent, and as we
shall see presently, may be relatively large; while a complex coeffi-
cient wavepacket is only band-structure limited, and can be of'the size
of a unit cell (e.g., a Wannier function).

As a practical matter, however, the restriction is not very serious.
A strongly "compressed" electron, as one might expect, fluctuates dra-
matically in size over a Zener period, and is far from our notion of a
coherent state. At the same time we shall see that states approaching
this notion, whether formed with real or complex weights, have very
similar properties.

We have determined that for a real gaussian weighting function
with deviation o =//g in k-sgace, the uncertainty Ax(t) oscillates.

We shall now determine the deviation ¢ which minimizes both the mini-
mum and maximum of Ax(t); we already know that for narrow wave packets,
o 5_(§E)x 10-1, such gaussian wave packets come close to being coherent
states with uncertainty product AxAkx = 0,5.

From

2 = 2
Ax® =~ §§'+ 5 {<E (E)>G(t) - (<E(k)>c(t)) ; for small b
with

E(E) = =A cos kxa

ect | 2
(kk Y )

G(t) = ——— e

for small b

f
PN




b €
its variance is Akx qg= /; , let K h

- =5 (k -K)
= A 1 = 2° % K a dk
<E(k)>G(t) =E; e cos k a -
let y = kx-K
o1 2
R

<E(k)> = ;—A—_%‘[Q e ¥ cos(y+K)a dy
2w o

cos (y+K)a=cos ya . cos Ka - sin ya . sin Ka

<E(k)>G(t) = (-A)

< § _ . |
cos Ka<c¢os ya N(0, o) sin Ka<sin ya)N(O,o){

2

Lot 2
2

= (-A) cos Ka e

where we use the expression of <cos ya>N(0’c) and <sin ya>N(0’o)

tabulated in the appendix 6.5.

Similarly

<E2(E)>c(t) - %< % cos Zk.a + %— 7G(t)
- '2—2' + 2—2 cos 2Ka  <cos 2ya>y g o
= %j + 2—2 cos 2Ka e-202a2

and finally
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Ax2 1 .1 éi_+ éi 2ect —202a
2b 22 ) 2 2 h
ect -oza
- A" cos (T a)e
2 - ba2
2 1 A 2
Ax Eg'f' 2 :(l -e )
2e e
; b
(Zeeta) ( -ba 2 )}
+ cos | —— e -e
h
The position of this electron is given by
x = [<E(E3> - E
ee G(t) v
_b 2 :
= l'—-l:-A e 4 cos eet a ~-E ]
ec h v
' 2 2ecta
The minimum value of Ax™ is attained for cos 5 - 1 which corresponds

to the edge of the B.Z.:

2 . ba_ 2

2 1 A 2 -ba

Axmin’ﬁ+—ﬂ{1-2e te }
2e e

For a given electric field & the minimum size of the electron: 4&x is

given by
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dsz =0
db
2 _ ba’ 2
1 A 2 2 -ba
- ——§-+ 2 { ae e } 0
2b 2e’e

_azé. 2
4.2 2 -abi,_ 4 2A
ab [e -e ] ;f' with n eca

10°

For a typical crystal 2A = 2eV,a = 58 and we have n = 0.4 . with €

expressed in kV/cm. We can now plot the results formed as a function

of the electric field in Figure 1. We see that Ax is large at t =
and the uncertainty product is large at that time.

Let us also derive the state where the maximum value of ax is

minimized
2 2
2 1 A ~ba
Ax max "Zi-i'z—z—-?(l—e )
e e
dsz =0
db
22 2
_ 12 + n8a a2 e-b -0
2b
ba’ 2.4 4
e ba = —
2
n
2
n.

2
e-ba /2 ba2

T/4,

Figure 2 shows a state with less fluctuations in spread Ax; its uncer-

tainty product remains close to 0.5 at all times.
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We have earlier introduced the Houston functions (Equation (8) in
Chapter 2, 2.2.3 and Chapter 3, 3.2) as superpositions of Stark states
with complex weighting

k (0)

i —
x/2 = X E(l)(k')dk' - 12V o (o)
f(v) =f dk (0)f(k (0))e ~ 70 X e kK X
-K/Z X X
which is the Fourier coefficient of f(kx(O)) weighted by
k (0) —
i—ef x B @)k

e 0 X The weighting function £(v) is real if and

only if the waveform f(kx(O)) contains a phase modulation

i k (0)

0 which cancels that weighting f(kx(O)). Real

waveforms f(v) generate the type of oscillations we have discussed up
to now.

We will now consider a waveform f(kx(O)) without this phase modula-
tion. Such wavepackets generate a mode in which the size of the elec-
tron Ax 1s not bounded by a minimum value set by the electric field.

Let us recall some previous results about wavepackets of Houston states.

We will set X(k) = 0 in this calculation. We have

x> = L<fr(k (0)E' (k (0))>

+ L %z (eet + k(O))— e(E(o))} HEONES

<x2> = -<f*(kx(0))f'l(kx(0))>m

i = ect o] 2
+ <{E'(k(0) +—fr-) - E <k<o>)‘[f(kx<0))| >

e ——— . [ S Y S . -

e |

-

-1
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+ =5 <%E(E(0) + %) - E('E(O))}2|f(kx(0))|2>,<

h

<JE(k() + -‘ie—t) - E(E(O))}f*ckx(o»f' (k (0))>,

+ <s(k(0) +e—ei) £ <0))|2

_ 1 </2
with <()> =3 dk_(0) ( )

-«</2

Let us simplify these expressions by writing

ect
(k(O) + T) = E(t)
E(k(0)) = E(0)

£(k (0)) = £(k) = £ = |£] e3®

We first wish to prove that it is possible to localize an electron
in this mode. For this purpose let us simply build a Wannier state
positioned at £ along the electric field. The corresponding wavepacket
is

-ikx(O)K
f(k_(0)) = e
x

Using a cosine bandstructure

E(k) = -A cos akx

we quickly find

N e e et i men
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<x>=£

2
Ax2 = <z(k(e))>_ + e‘z‘sz (1 - cos EE:{-)

At times t = m ;%E 2t  our electron is localized to the extent allowed
by Z(k) which is of the order of one lattice parameter. Having done
this the electron size will oscillate drastically to the size of the
Zener oscillation. The point here is that the localization at a time
t is not electric field limited but iIs bandstructure E(E) limited in

this mode. However, its spread is electric field dependent. Let us

generalize these results. We have:

x> = .<f*f">K + <{E(t) - E(O)}2|f|2>'<

L
22
ee

i t 1 2
+ o <{E'(t) - E"(O}£]">
+ z—t <{E(t) - EQQ)} ££'>

We provisionally drop the E(E}term

using <{ E'(t) - E'(0) } |£|%>

1 27x/2
e -z e?]

i L}
o <UE@®) - B }2[£][£]">

and fx£' = £x(g] et + 550 g]e™?)

2
= 2|£l[£]" + 3o [£]

-
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we find <Ax2> = .<f*f't>K

1

e2€2

+

<E@) - E@P[e]% - = (e - B} [£]

Since there is no phase modulation in f, the phase ¢ is only related to
the initial position in the crystal: ¢ = -ka(O). In the desired
term Ax all terms involving £ should cancel and we find (letting £ = 0O

for simplicity):

1x? = —<fxf''> + ; 3 <{E(t) - 12(0)}2|f|2>’<
e €
- ; > (<{E(t) - E(O)}|f|2>K)2 + <E(E)|f|2>K
e €

x> = <{E(r) - B[

For t = 0 the bandstructure terms cancel and sz reduces to —<f*f'’>
which is the variance of the wavepacket related neither to the band-
structure nor to the field. These last equations can be compared with
those of the superposition with real weights. In that mode no E(0)
terms appears as a consequence of the phase modulation

k

i -
- =) T E@dk,
e . If an electron is not too strongly localized at a

time t its size will not oscillate so drastically. An interesting
application will be to determine what is the minimum size of an electron
traveling through the Brillouin zone. In ballistic transport the de-
vices considered are usually at the order of a micron or smaller. It
can be imagined that for such device dimensions the size of the electron

may not be negligible on the scale of the device.
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The wavepacket to be used is obviously the quasicoherent one

~(k (@) -kq)?/40% - 10K (0)

1
f(k_(0)) = e
b3 (2ﬂ°2)174

centered at ko with £ = 0 (without any restrictions)

' k_(0)-k,
b (kx(O)) = f! = -(-———202—)f(kx(0))
k_(0)=k.\ 2
£17(k (0)) = £'' = (- L +( x °) )f(k )
x 2g 29 x
and we find
1
x> = = <{E(t) - E(O)}>N(ko o)
. (k (0)-k0)2
ax? = 7= <3 *N(k.,0)
20 4o oY
1 2 2]
+ Q(EC) - B} - (<E<c) - EQ0)> )
2.2 N(ky,0) N(ig,0)) |

We look for a wavepaciec of variance oz which will minimize sz.
It will turn out again that such wavepackets are sufficiently narrow
for the Gaussian wavepacket used to be nearly a coherent state
AxAkx= 0.5. This will assure our result to be near optimum. In this

calculation we set k0 = ) and we use the cosine bandstructure

E(k) = -A cos akx(O) = E(Q)

E(t) = -A cos a(kx(O) + %% t)

At
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For narrow wavepackets the two first terms of sz reduce to —li .
4o
Let us compute the second term of sz

< {E(t) - 1-:(0)}2>N(0,c)

2 2 ect
<A“{cos a(k+K) cos ak} >N(0,c) with K )

= A2<l + = cos 2a(k+k) +-l cos 2ak - cos a(2k+K)>- cos ak>

2

N([=

N(O’U)

2, 2 2, 2 2 2
cos 2ak e-a 20 + l-c-':-a 20 - cos akK e 2 20

2
K 2

D=

- cos aK]’

where we have used the formula of appendix 6.5. The third term of sz

1s the square of

<E(t) - E(0)>N(O,c) = =A<cos a(k+K) - cos ak>N(0’c)

= -A e (cos aK - 1)

and we can finally write

2 22
sz - —l§-+ —%—E [ 1-cos ak-e?29 (1 - cos aK)Z
e

4o

2,2
+e 2 20 cos aK (cos aK-l)] with K = 3%5

At time t = O: sz - 1/402 = sz min,

At the Brillouin zone edge t = A . I-;
eca 2
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2( _nm 2 x
Ax (t 2 a) ax ( K= )
2 2 2 2 2
-1 4.4 | 2 - 4e™2 0 4 o280 |
7% 27 | ‘
4o e e
_1, ol -tz 2
%t 232 ’
e g

where we introduce b = 202 or g = "%-. sz is an interesting oscillat-

eca &°F

ing function of time. Its maximum occurs at t = %- P

which is 1/4 of the Zener period T. This maximum is

2 ‘ 2
2 _1 A _ ma’b/2
Ax EE-+ -3 l 1 e g
e ¢

To find the wavepacket which minimizes this quantity we find the solu-
tion of

dAx2

L8X _a

db

1 nza2 a® -azb/Z
or-—2+T—-2—-e =
2b

0
-a%b/2 2.4 4
e ba = 3
n
2

2
baz oa b/4

ns

The results found using these formulas are the same as for the
Zener mode when Ax(T/4)Max is minimized, although the expressions are
not exactly the same (the differences are extremely small). We compare

these results in the table.
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Complex Coefficients

--------

Ax Max minimized

by n =

2
baze-a b/2

Ax Max minimized

—2
2b/4
bazema

by n =

Ax Max occurs at-%

2 1 n2a2 l_e-azblz}
2b 8

Ax Max occurs at-%

22 2
2 1 na -a’b
Mpax 26 ¥ T2 {l-e }

Ax Min occurs at'z

Ax Min occurs at t = 0

2
2 _ azb 2

2 1 n 2 2 _ 1
e 5_'{1 - e } 8% in = 20

R k for n =-————g————— which

emar 7574 c

2 -a
ba"e
h 2n

T = ;E-;—-s Zener period minimizes Ax Max

sz(T/Z)
2. 2

a'b
2 - —
1 2
= Zb -+ {1—3 }

NI'.'J

o
2b
therefore
Ax Max =~ Ax Max
real complex
Ax Min =~ Ax Min

This is only true for the Ax max minimized wavepackets!
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The graph for the dependence of 4x max minimized in the complex
coefficient mode 1s then the same as graph 2 of the real case. The
uncertainty product 1iIs nearly 0.5 at all times.

In order to show that the 4x max minimized state is a special case
we have also studied a different case where the electron is localized
initially at t=0 over 1Q lattice parameters (Ax = 10a). We have
plotted on Graph 3 Ax for different times:

Ax(0) = 10a = Axmin

Ax(lO.12 sec), 10-'12 sec * gcattering time .
o

Ax(T/4) = BX ax

Ax(T/2) = Ax on the Brillouin zone edges 1
g
b

On graph 4 we show the time dependence of Ax for Ax(0) = 10a for

e =0.1, e =1, ¢ = 10, ¢ = 100 kV/cm.
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4, TFOQURIER SPECTRUM OF THE GaAs CONDUCTION BAND

4.1 MOTIVATION

We have seen that the coefficients of the Fourier series expansion
(FSC) of the band structure in the kx direction appear as parameters in
the general formula for wave packets of Stark states. Since conduction
electrons in GaAs are possible candidates for the observation of Zener
oscillations, the FSC of the GaAs conduction band will play a role in
the design of wave packets.

More importantly, these FSC are also used for calculating the
radiative transition probabilities between Scark levels. We shall
demonstrate this by working out the probability 1:-\)u of a transition
from an initial state [v> to a final state |u>.

We assume the Stark states to be exact eigenstates of the crystal

Plus electric field Hamiltonian HO

H0|v> = E [v>
the total Hamiltonian is then

H + p-A

total = H0

where A is the vector potential of the electromagnetic field and ; the
electron momentum. If we assume the interaction pot.~tial to be suffi-
ciently small (compared to the inverse of the observation time) for
first order perturbation theory to be valid, then in the dipole approxi-
mation the transition probability pvu is proportional to the square of

the matrix element <u|px|v>. Let us evaluate this matrix element:

aA . .A_aa

A mimn o amim e

PRSI S JIPE J
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e

AALAS

<u|px|V> = <u|xH

total I‘It:ot:alxl\)> B (Ev - Eu)<u|x[v>

=(E -E) X 2 ke ao| L EV® -5 +x @ d
v TR /2 BV Tvix] ee \V nn( ) X

1
= (€ -E)[-—“G +lf Ed) gee TV WX g
v u ee vVu K ec

b.4
-x/2
kx
/2 12n(v-p) = _
=€ -g) 1 e K E[® dk
v H et K X

-«/2

We conclude that this transition probability is proportional to
the square of the amplitude of the FSC: Fv-u of the bandstructure E(k).
The transition probability 1s the basis of the phenomenological inter-
pretation of radiation where the ideally unscattered Zener electron
initiallyvprepared in state |v> moves to Stark states of lower energy
in the field direction and releases 1its potential energy as radiation.

The process that we have just described is the usual picture of
the incoherent emission of radiation. For the device application of
Zener oscillations as a coherent radiation source we are more interested
in a classical description, in which the conduction electrons oscillate
in phase. In this classical picture the radiation originates from an
oscillating dipole which is formed from a superposition of eigenstates.
We have studied such superpositions or wavepackets at length. The

additional feature is that as it radiates the wavepacket will move and

K

10 the

spread. We know that for a wavepacket not too wide in Ak.x <

expected position of the electron 1s given by

1 = ee =
x(t) = x(0) + e—e' [E(R(O) + h—- t) - E(R(O))] .

VY )

bkond oA Lt
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We also found that this electron was localized in a size 2Ax which is

i

’( also oscillating. Most of our studies emphasized the various kinds of
behavior of Ax for different wavepackets. For the optimal wavepacket
where AxMAX is minimized it was seen that Ax does not fluctuate much

the product AxAkkbeing nearly optimal at all times. For such a wave-

packet the oscillating electron is a simple classical dipole, Ax being
small compared to the amplitude of oscillation. The frequency of os-
cillation of this dipole is then given by the Fourier analysis of x(t)
which is simply the Fourier analysis of the bandstructure. The Fourier
analysis then yields the radiation spectrum of an unscattered Zener

¢ electron. Our studies of wavepackets have enabled us to establish the
conditions under which the unscattered Zener electron exhibits classical
behavior.
4.1.1 Fourier Series Computation

The bandstructure of the GaAs conduction band was kindly furnished

by Prof. Karl Hess of the University of Illinois. It is given at 156
sampled points in (1/48)th of the GaAs Brillouin zone (see Figure 5 and
program DATABAND). For convenience we use the bravais cell of the

. reciprocal space which has simple boundaries. Using the 48 fold symme-

‘ try of the Brillouin zone we fill-% of this Bravais cell (see Figure
6 and program FILLBZ2) and store in the file CUBEBAND. The Fourier

computation is carried out by the program called ZENER2 (see Figure 7).

4
This calculation is carried out for each desired direction of periodi-
city x in reciprocal space starting from any point 0 of the Brillouin
. Zone. An accuracy of one percent was required. This accuracy is
(|

determined by the number M of points used for the interpolation of the

bandstructure along the path [:6, <0 + :]. This interpolation uses a
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Sampled area of the Brillouin zone.

/

Cubic region used by the computer.
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TYPE: RUNZENER?2

ZENER2 * \Lv

LOAD BANDSTRUCTURE DATA
FROM CUBEBAND FILE
DIRZENER?2 \
DIRECTIVE PROGRAM
K=2 KO=? M=?
TYPE : RUN e \L
' INTERPOLA
ZENER2F >ND %%%;E?N N
A ORDER
LOAD
FOURFILE'S
OR 4 DISPATCH?2
BANDFILES DISPATCH PROGRAM
ZENER2F [ MENU)
FOURIER SERIES PLOT OR PRINT
FROM K=? OR SAVE INTO FILES,
TO K=? INTERPOLATION OR
FOURIER RESULTS
FOURSZRIZES?2 BANDPRIXNT?

BANDPLOT?2
FOURPRINT?2
FOURPLOT?2
BANDFILE?
FOURFILEZ2

* Actual name of the programs

Figure 7. Block diagram cf{ the computer programs used to Fourier

analyze the band structure in an arbitrary direction.
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polynomial expansion of 3rd order using 19 coefficients fitted to
the local sampled data. The formula for the point located at (x,y,z)

of the closest sampled point (W1,W2,W3) is:
E(x+Wl, y+W2, z+W3) = E(W1l, W2, W3)
+A(0)x + A(l)y +A(2)z
+B(0)x% + B(L)y? + B(2)2”
16X + 6Ly + 6(2)23
+F(0)yz + F(1)xz + F(2)xy
+H(1)x2y + H(Z)xy2
+H(3)yzz.+ H(4)yzz
HL(5)x2z + H(6)xz>
+H(7)xyz

The Fourier computation is made using the trapeze method. The results
are saved in files labelled E: 0 and M. « and <0 are given in Miller
notation and correspond to a body centered cubic reciprocal lattice.
In Figure 7 the block diagram for these programs is shown. Those pro-
grams are given in appendix 6.6).
4.1.2 Results

The Fourier calculations are given for K = (100), (110), (111) on
pages 82-84 . Five harmonics (10 for (111)) are sufficient for an

accurate description of the GaAs bandstructure. In practice it might
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be interesting to use for example the fourth harmonic in the (111)
direction in order to maximize the number of oscillations of an electron
before it is scattered.

The same calculations were done with k.x at a slight angle with
respect to a principal direction in order to evaluate the effect of
misalignment of the field. As expected the radiation spectrum is
largely conserved except for a broadening and a curious splitting. It
is possible to account for this behavior analytically, but a plausi-
bility argument is a good deal more instructive.

If the field is along a principal lattice direction, the trajectory
in the extended Brillouin zone that describes the motion of the elec-
tron, beginning for example at T, traverses an identical path in each
repetition of the central zone, that is to say, it is periodic with
period x, and the Fourier coefficients are determined by the band struc-
ture along this segment of 'length" «.

If the field deviates from a principal lattice direction, the
trajectory, starting at [, may traverse many repetitions of the central
zone before it again reaches the point I'. Thus the fundamental period
of the periodic motion may be long, to be exact, the length of the
reciprocal lattice vector of the trajectory. Furthermore, the trajec-
tory will sample different regions of the central zone as it crosses
successive repetitions. However, 1f the deviation from a principal
direction is small, then because of the continuity of the band struc-
ture, successive segments of the trajectory will be quite similar,
changing only slowly in the course of the transit from [ to I'. Thus the
long~-period periodic motion can be viewed equivalently as a short (k)

period modulated motion, with a '"low-frequency" modulation
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corresponding to the gradual change of the band structure segment that
is being traversed. From this viewpoint, the broadening of the spectrum
arises from a low frequency frequency modulation of a high-frequency
carrier.

Furthermore, although the change is gradual, corresponding to a
low modulation frequency, it can be quite substantial for a band struc-
ture as complicated as that of the GaAs conduction band: adjacent
segments of the trajectory are rather alike, but segments remote from
each other can be quite different. In the language of frequency modu-
lation, this means that the modulation index may be large. It is a
familiar result that such a "deeply modulated" signal may have side-
bands that are larger than the carrier, or even a missing carrier.

This is the phenomenon of spectral line splitting seen in Figures 8,9

and 10.
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5. SUMMARY

This work is devoted to a general study of the one-band oscillation
of an electron under a high applied electric field, the so-called Zener
oscillation.

First we review the acceleration theorem and the introduction of
the one-band approximation. The existence of the Stark state and Stark
ladder seems to be definitely theoretically established in the litera-
ture.

We study general Zener oscillation states which correspond to
wavepackets of Stark states or Houston states. The analysis is carried
out in terms of the expectation values and uncertainties of both the
position and quasimomentum operators.

The position expectation and the size Ax of the Zener electron
oscillate in time with an amplitude that depends on the wavepacket. We
discuss in detail two different types of modes: the real wavepacket of
Stark states with electric-field-dependent minimum size; the real wave-
packet of Houston states with arbitrary minimum size and a resulting
more or less large fluctuation of the size Ax.

We determine that the Houston state is the only state to satisfy
exactly the equality in the Heisenberg relation: AxAkx 3_% . However,
for narrow wavepackets with Akx small the Heisenberg equality is nearly
realized.

We determine a classical state corresponding to a quasicoherent
state AxAkx pt %-, with maximal oscillation amplitude and minimal size

fluctuation of the Zener electrons. This classical state, for a model
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:': tight binding band structure, corresponds to a Gaussian wavepacket with
éi a variance which is a function of the electric field.

t Finally we give the spectrum of such a classical Zener oscillation
:; in the GaAs conduction band for different electric field directions.

F! This spectrum'is broadened but not destroyed for small misalignment of

the electric field.
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APPENDIX 6.1

Orthogonality of Stark States

W @ e) v, (F,e)?

-1
K/Z | T T — oy o 3. o
../] dkxdkxd»\)(kM;(k )f drw;;(k ,r)wn(k,r)e
-x/2
(Ev-Eu) k/2 _ —
-1 E— t f dkxqz*(k'):tv(k)
=e -«/2
(E -E ) k
v Y X _
-i h t lfK/Z i pys (Ev EL\) dkx
a e = e
<
-«/2
since Ev_Eu = 2ree (v=u) we have:
kx 1 [</2 i %1-(\)—11)1(x
1 /2 1 v (Ev-l':u)dkx = :f e
Py e -x/2
-« /2
= §
VU
therefore:
-1 (EV—E“)c
- - h
<wu(r,c)lwv(r,t)> = e Suu ™ S

(Ev-Eu)

dk
x

PP RO S




F*rvfmv‘v"’

1

I 2 ams o sae o

-89~

APPENDIX 6.2

Computation of <wv(r,t)lHt°tallwv(r,t)>

H Ho—eex

=
total

<v|H

YT [Hy—eex|v (F,K")> = E(®)—ee (% + xnn(l?))é(kx-k'x)
X

Using the result (7)

k/2 — - - —
<l lv> = %f/z :E(k)-ee [%—)- (e, @] + Xnn(k)]
-

/2 — - — - — -
toralV” = f f dkidk o* (k") <y (r, k) [H, . [V(E,k)>0 (k)
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APPENDIX 6.3

Bloch Function Matrix Elements
<k! ,nlxli’,rp and <k',n' lx2|E,n>
Differentiate the expression
f vk (et o)y (erydr = 8, 8 (k")

with respect to kx:
3 == _ 2 fi(E—E')-? —en. T
— 3 , (k-k') = EE; e ug.(k )un(k)dr

Tl Yoy * — — -
- ifei(k k')-r wy xe_(K)dT

L(k=k') T, oy 3 T
+fe. u:,(k ) 3kx un(k)dr (€2)
= i<k',n'|x|k,n> - ixn,na(’k'-E') (c3),
1(2m)° — = 3 - -
defining xn'n = =5 d/ﬁ u:.(k',r) T un(k,r)dr
x
u.c.

3
The step leading to (C3) can be taken because u;, Fr has the crystal
X
periodicity and hence the last integral in (C2) is proporticnal to
§(k-k").

So we have the result

IQ)

<Kont[xlin> = -6 g $GKD + X &ND8EK

M

X

Now differentiate both (C2) and (C3) with respect to kx:
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32

ok
X

— i _-E' .— ane 2 —— —
5 81 8K = -f el(kf) r uk, (K)xPu_(0)dE

i(k—k")r ~ev. O
+ :LZfe ( )T u:,(k')x ak u (K)dr

2.

1(k-k") -t =y 3 = =
+ fe ar, (@) 2, o @dr (c4)
n akx2 n

==y o L L(k=k") T, Tivil. yas
- 8 18 (k-k") f e uky (kDx"u (k)dr
X

1(k-k') T e D o =
+ :l.fe ul”;, (k')x akx un(k)dr

-1 X (k') G(k—k') (C5)

We can use (C4) and (C5) to evaluate the troublesome middle integral on

the rhs of both:

—— = - - 2
1(kKk')- 3 -~ 1(k—k')- - A
ife ( T u;.x 3K “n':lr - -fe ( o ug.(k') 2 un(k)dr
X dk
X
=X e k' ) 3 6(k-k')
and we find
2= a2 —
<k',n'[x“|k,n> = - — 6, 8 (k-k')-21X _, (k' ) T 6(k—k')
5k 2 n'n
1(RK") T 2
- L ] —' e —
-fe ut, (k') 5 u (k)dr (C6)

ok

X
For the states of a single band, n=n‘, we can take advantage of the
Hermitean property of the coordinate operator to simplify this expres-

sion. Starting with the normalfzation integral
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L u* (E)u (E}d;.= 8

Q n' n n'n
‘ and differentiating with respect to k.x we find
g
- f 31.1;*l ' Bun _
- R —— r =
E % % + e 3% ) dr =0
» X X

or

and

au*
—ax = 20 f
n

as well as its derivative

* *
o 3X (k) Q) au . +3un 3url =
ok 23k
x 0 0X

g are pure imaginary. But since laun/8x|2 is real we can define a real

quantity

i1

and then

) X
- (2w) - nn _ .
- u dr i 3kx Zn

and

2 nn nn 3k k

N — 32 3 % n
<k',n|x“|k,n> = §(k-k")-] —= + =__ + 2iX +1 (c7)
3k.x X X i

In this expression the last term is imaginary, and it cancels the )

imaginary part of the third term in the bracket.
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APPENDIX 6.4
k/2
1 /2 i27a l:- 1[ < i2ra %
a) -J/' ke dk = = ke
K L /2 | 12ma /2
k
" /2 1i2wa Py ]
~ 12ma e dk

-«/2

K inra -l K ira ~ira
'14170. e + e +—-———22(e -e )

4T
K ix a K
* Tra cos Ta +;T—2a—2 sin ma = (-1) o a %0
1 /2
L kdk =0 a =0
-«/2
k/2 2
b) ;1/ kzdk-% @ = 0)
-</2
k /2
1 /2 ) 12m7a y 1 < 2 {210 k
Py ke dk = | Ora ke K
-« /2 -k/2
k
2 [</2 1210 =
- :LZ—TTG./ ke dk
-« /2
2
2K ] K o K
= - Tma V) 1o = D n2a2
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APPENDIX 6.5 f
] 4
& For a narrow wavepacket
: 2
i ~ I
- . 2
2 <cos ay> = A e 2q cos ay dy
3 N(0,0) s -
o 2.2
_ga
' 9
[ = e n (see Dwight table)
2
i A
1 @ 20‘2
<gin ay>N(o’U) = —/E_;Le sin ay dy = O

since for small variance ¢ < 10-'2( it is possible to replace the inte-

gration over [- -E- —;—] by ]-oo,w[

f‘lz( )dk-f_: ( )dk

-c/2

Let us evaluate the error e:

|</2 ® _2 2
e-f +f _l_ey/2o cos ay dy
o Je)2 2o

_1_ -IC/Z +fee e_y2/202 dy
V210 Vo /2

let x = y/a

i——
21 Yoo x/20

2

2
K
/20 ® _.2 -<—) /2
1 ) + e ¥ /2 dx% e 2a

2
< e /8a using the Chernoff bound on the error function. In

our calculation %i 1 the error is e < 3,8 1076,
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APPENDIX 6.6
Computer Programs
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T3 THE DISY IN THE DRIVEL?"
CHIS (4)3°RLOAD CHAIN.AS20"

519 CALL 520"DISPATCHZ"
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) PEM FOURIER CALCULATION
10 ag%*aT *FO'RSERIES CHATHED®
PI-:A#ﬁﬂwﬂ

Pi
140 “PRINT 'Cﬂ“’UTE RCI) FRON °

-

178 Fla =070 8-2
U5 RO = R10) + (XN H 1) - XCHD) 8 (ECHD + ECN # 1)) / 2
178 D) '

9RO sRO)/A

180 gL =1

182 PRINT "R(Q)="R(0)

23 FARESELTORR

HEqzKapl X2/ 8

23148 5t5) =)

212Gy =9

2 ﬁ_ 129

s 0RO TON -2

I I

223 I = (E(L) - ECH)) /7 (XL) = X{N))

30 OO = (EON) £ X(L) = E(L) £ X(ND) /7 (X(L) - X(N))
25C=CD+XL)ED

45 r =0+ X(N) XD

245 0Ky = C(K)+C & SIN(H & XL))

woo DNy s OKY = F & SIN (H & X(N))

S CE)=CE)ED /B E( COSCH R X(L)) - €OS (H & XH)))
230 5(K) =§'K)-C & COS(H % XL))

K =K +F 8 MS(H*X(”))

220 (K = §(K)+D/Rx("SIN(H S X(L)Y) - SIN (H £ X(1)))
300 MNEXT M

310 SlK)Y = S(K) /K / PL

315 O(K) = ¢(K) / K / PI

20 RK) = (HXK)t 2+0(K) P 2)2(1/2)

325 PRINT "S(°K*)="S(K)

326 PRINT "C(°K* )="C(K)

27 PRINT "R{"K*)="R(K)

NEXT K
350 PRINT "IS THE DISK IN THE DRIVE 17°
350 INPUT A$

400 PRINT_CHRS {4)3"BLOAD CHAIN»AS20®
410 CALL 520"DISPATCH2®
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3 BEY_ DISPATCH PROSRAN DISPATCH2

HI4E
PRINT *BISPATCY CHATMER®
PRINT "F'."J"{I)ERMCD‘PG‘E!T COXUTER®

$ 2 70 10
IF AT) = 0 THEW 112

9 PRINT "CHOT5S THE MEXT PROCESS'
0 PRINT 241> IS RANRORINT®

PRINT *¢2% IS RADPLOT
PINT *3> IS FOLRIER SERTES CONPUTATION'
TAT *<4 13 FORPRINT

0 > auepLOT™
00 PRINT "8 IS INPUT NEW K AND KO®
230 PRINT *<ToSAVES FQ'J? IN FOUSFILE®
-5 pelnt "3"%"55 BOND IN RAMDFILE®
2 IH”UT "CHOICE S iCH
'{l‘TT ;'S THE DISK IN THE DRIVEL?®

::
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g Bt B B s R0 R B bz
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H28 (4)i*BLOAD CHATMYAS20"
= o8 5200 RANIOPTHTS®
T8 T DS (B0 CHIN 159"
73 BRI CHRS (4)3*ELOAD CHATH oh520"
75 (AL S20FORSERIES”

95 SRTAT CHOS (4);*BLOAD CHAIN "520°
i 20*FOLRFRINT”

30 FRINT CHRS (4);"BLOAD CHAIN "52A°
2 ¢ FOURPLOT??

ERTAT CH8 (4);"BLOAD CHAIN 452"

G CALL 520"DIRICHER2®

°I‘IT C4w3 (4)3°BLOAD CHAINsAS20"
CALL S20°FGUSFILEZ®
FRINTCH3$ (4)3°HLOAD CHAINsAS20"
CALL S20°BAMDFILED®
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